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ABSTRACT

We present theoretical results pertaining to the ability ofℓp min-
imization to recover sparse and compressible signals from incom-
plete and noisy measurements. In particular, we extend the results
of Candès, Romberg and Tao [1] to thep < 1 case. Our results indi-
cate that depending on the restricted isometry constants (see, e.g., [2]
and [3]) and the noise level,ℓp minimization with certain values of
p < 1 provides better theoretical guarantees in terms of stability and
robustness thanℓ1 minimization does. This is especially true when
the restricted isometry constants are relatively large.

Index Terms— Compressed Sensing, Compressive Sampling,
ℓp minimization, Sparse Recovery

1. INTRODUCTION
The problem of recovering sparse signals inR

N from M < N mea-
surements has received a lot of attention lately, especially with the
advent of compressive sensing and related applications, e.g., [4,5,1,
6]. More precisely, letx ∈ R

N be a sparse vector, letA ∈ R
M×N

be ameasurement matrix, and suppose the possibly noisyobserva-
tion vectorb is given by

b = Ax + e. (1)

wheree ∈ R
M denotes the noise. The goal of a sparse recovery

algorithm is to obtain an estimate ofx given onlyb andA. This
problem is non-trivial sinceA is overcomplete. That is, the lin-
ear system ofM equations in (1) is underdetermined, and thus ad-
mits infinitely many solutions among which the correct one must be
chosen. As the original signalx is sparse, the problem of finding
the desired solution can be phrased as some optimization problem
where the objective is to maximize an appropriate measure ofspar-
sity while simultaneously satisfying the constraints defined by (1).
As the sparsity ofx is reflected by the number of its non-zero en-
tries, equivalently its so-calledℓ0 norm, in the noise-free case of (1)
one would seek to solve theP0 problem, e.g., [7],

P0 : min
x

‖x‖0 subject tob = Ax. (2)

It can be shown thatP0 recoversx exactly ifx is sufficiently sparse
depending on the matrixA [7]. However, this optimization prob-
lem is combinatorial in nature, thus its complexity grows extremely
quickly asN becomes much larger thanM . Naturally, one then
seeks to modify the optimization problem so that it lends itself to
solution methods that are more tractable than combinatorial search.
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In fact, it has been shown (e.g., [2, 1]) that, in the noise-free setting,
ℓ1 minimization, i.e., solving

P1 : min
x

‖x‖1 subject tob = Ax, (3)

recoversx exactly if‖x‖0 ≤ S and the matrixA obeys a particular
restricted isometry property, e.g.,δ2S+2δ3S < 1. HereδS are theS-
restricted isometry constants ofA, defined as the smallest constants
satisfying

(1 − δS)‖c‖2
2 ≤ ‖AT c‖2

2 ≤ (1 + δS)‖c‖2
2 (4)

for all subsets of columnsT with #(T ) ≤ S and any vectorc. In the
general setting, [1] provides error guarantees when the underlying
vector is not “exactly” sparse and when the observation is noisy.

Theorem 1 [1] Assume thatx is arbitrary, b = Ax and suppose
that δ3S + 3δ4S < 2. Then the solutionx∗ to P ǫ

1 (see(9)) obeys

‖x∗ − x‖2 ≤ CSǫ. (5)

For reasonable values ofδ4S , the constant C is well behaved; e.g.
C = 8.82 for δ4S = 1/5.

This means that givenb, solving P ǫ
1 recovers the underlying

sparse signal within the noise level (thus, perfectly ifǫ = 0).

Theorem 2 [1] Assume thatx is arbitrary,b = Ax+e, ‖e‖2 < ǫ
and suppose thatδ3S +3δ4S < 2. Then the solutionx∗ to P ǫ

1 , where

Pǫ
1: min

x

‖x‖1 subject to‖b −Ax‖2 ≤ ǫ, (6)

obeys

‖x∗ − x‖2 ≤ C1,Sǫ + C2,S
‖x − xS‖1√

S
. (7)

For reasonable values ofδ4S , the constants are well behaved; e.g.
C1,S = 8.77 andC2,S = 12.04 for δ4S = 1/5.

More recently, [8] showed that in the noise-free setting, a suffi-
ciently sparse signal can be recovered perfectly viaℓp minimization,
0 < p < 1, under less restrictive isometry conditions than those
needed forℓ1 minimization.

Theorem 3 [8] Let 0 < p ≤ 1. Assume thatx is S-sparse,b =

Ax and suppose thatδkS + k
2−p

p δ(k+1)S < k
2−p

p − 1, for some
k > 1. Then the minimizerx∗ to Pp, where

Pp: min
x

‖x‖p subject toAx = b, (8)

is exactlyx.
Note that, for example, whenp = 0.5 andk = 3, the above

theorem only requiresδ3S +27δ4S < 26 to guarantee perfect recon-
struction withℓ0.5 minimization, a less restrictive condition than the
one needed to guarantee perfect reconstruction byℓ1 minimization.

In what follows, we present generalizations of the above theo-
rems, giving stability and robustness guarantees forℓp minimization.



These are of the same nature as those provided above forℓ1 mini-
mization in the general (noisy and non-sparse) setting while being
less restrictive. We also present simulation results, further illustrat-
ing the possible benefits of usingℓp minimization.

2. STABLE RECOVERY IN THE PRESENCE OF NOISE
WITH ℓP MINIMIZATION

In this section, we present our main theoretical results pertaining to
the ability of ℓp minimization to recover sparse and compressible
signals in presence of noise. To that end, we define

P ǫ
p : min

x

‖x‖p
p subject to‖b −Ax‖2 ≤ ǫ. (9)

Theorem 4 (Sparse Case)Assume thatx is S-sparse and suppose
that for somek > 1, kS ∈ Z

+

δkS + k
2
p
−1δ(k+1)S < k

2
p
−1 − 1. (10)

Let b = Ax + e where‖e‖2 ≤ ǫ. Then the minimizerx∗ of P ǫ
p

obeys
‖x∗ − x‖2 ≤ CS,k,pǫ, where

CS,k,p =
2

q

1 + 1

k2/p−1(2/p−1)

`

(1 − δ(k+1)S)p/2 − (1 + δkS)p/2kp/2−1
´1/p

.

In summary, the theorem states that if (10) is satisfied then we can
recoverS-sparse signals stably by solvingP ǫ

p . Note that by setting
p = 1 andk = 3 in Theorem 4, we obtain Theorem 1 as a special
case. By settingǫ = 0, i.e.,assuming no noise, we obtain Theorem 3
as a corollary. An important question that arises next is howwell one
can recover a signal that is “just nearly sparse” [9]. In thiscontext,
let x be arbitrary and letxS be the vector obtained by retaining the
S coefficients ofx with the highest magnitudes and setting the rest
to zero.

Theorem 5 (General Case)Assume thatx is arbitrary and sup-
pose that (10) holds for somek > 1, kS ∈ Z

+. Then the solution
x
∗ to P ǫ

p obeys

‖x∗ − x‖p
2 ≤ C

(1)
S,k,pǫ

p + C
(2)
S,k,p

‖x − xS‖p
p

S1−p/2
, where

C
(1)
S,k,p = 2p 1 + kp/2−1(2/p − 1)−p/2

(1 − δ(k+1)S)p/2 − (1 + δkS)p/2kp/2−1
, and

C
(2)
S,k,p =

2( p
2−p

)p/2

k1−p/2

2

41 +
(1 + kp/2−1)(1 + δkS)p/2

(1 − δ(k+1)S)p/2 − (1+δkS)p/2

k1−p/2

3

5 .

Thus, the reconstruction error (to thepth power) is bounded by
the sum of two terms; the first is proportional to the observation er-
ror, while the second is proportional to the bestS-term approxima-
tion error of the signal. Note here that by settingp = 1 andk = 3 in
Theorem 5, we obtain Theorem 2, with precisely the same constants.

Remarks

In Theorems 4 and 5, we provide sufficient conditions for recover-
ability of sparse or compressible signals from noisy and incomplete

measurements viaℓp minimization where0 < p < 1. The constants
CS,k,p andC

(i)
S,k,p determine upper bounds on the recovery error in

the sparse and general settings, respectively. These constants depend
on S, which reflects the sparsity or the degree of compressibility of
the signal to be recovered, onp, determined by the recovery algo-
rithm we use, and onk, which is a free parameter provided (10)
holds. Our actual goal is to obtain the smallest possible constants
for givenS andp, which can be done by finding the value ofk that
minimizes the corresponding constant in each case. In summary,
givenS andp, we can replaceCS,k,p andC

(i)
S,k,p with CS,k∗,p and

C
(i)
S,k∗,p wherek∗(S, p) minimizes the constants in each case.

An extensive analysis of this last minimization step depends on
the behavior of the restricted isometry constants of the matrix A and
is beyond the scope of this paper. In Section 4 we present empirical
behavior of these constants whenA is a Gaussian matrix.

Finally, note that (10) is less restrictive for smaller values ofp.
For example, whenS is large so that (10) does not hold forp = 1,
there may still exist somep < 1 for which (10) holds for somek.

3. PROOF OUTLINES

Due to lack of space, we only present the outlines of the proofs,
which mainly follow those of [1] with modifications to account for
the factp < 1.
Proof outline for Theorem 4. Let x be the original signal with its
S nonzero coefficients supported onT0 and letx∗ the solution to
P ǫ

p . Let h = x
∗ − x = hT0 + hTc

0
be the difference between

the original and recovered signal, divided into two partshT0
with

nonzero coefficients onT0 andhTc

0
similarly supported onT c

0 . It
can easily be shown that‖hTc

0
‖p

p ≤ ‖hT0‖p
p.

Divide T c
0 into setsT1, T2, ... such that∪i≥1Ti = T c

0 , whereT1

supports thekS largest coefficients ofhTc
0

, T2 supports thesecond
kS largest coefficients ofhTc

0
, and so on. LetT01 = T0 ∪ T1. Note

that Ah = AT01hT01 +
P

i≥2 ATihTi . Since bothx andx
∗ are

feasible then‖Ah‖2 ≤ 2ǫ. This leads to the following inequality

(2ǫ)p ≥ ‖Ah‖p
2 ≥ ‖AT01hT01‖p

2 −
X

i≥2

‖ATihTi‖p
2. (11)

Since#(T01) = (k + 1)S and#(Ti) = kS, then

(2ǫ)p ≥
`

1 − δ(k+1)S

´p/2‖hT01‖p
2 −

`

1 + δ(k)S

´p/2
X

i≥2

‖hTi‖p
2.

(12)
What remains now is to bound

P

i≥2 ‖hTi‖p
2 and‖hT01‖p

2 in terms

of ‖h‖2. Observe that|hTc
0
|p(l) ≤

P

i |hT c
0
|
p
(i)

l
=

‖hTc
0
‖p

p

l
, where

|hTc
0
|(l) is the lth largest element of|hTc

0
|. Thus, taking thepth

root, squaring, and summing overl ∈ T c
01 we get

‖hTc
01
‖2
2 ≤

‖hTc
0
‖2

p

2−p
p

(kS)2/p−1
≤ ‖hT0‖2

p

2−p
p

(kS)2/p−1
(13)

Now, note that|hTi+1(u)|p ≤ P

t∈Ti
|hTi(t)|p/(kS) = ‖hTj ‖p

p/(kS).

Taking thepth root, squaring, and summing overu ∈ Ti+1, we get
‖hTi+1‖2

2 ≤ (kS)1−2/p‖hTi‖2
p. Thus,

X

i≥2

‖hTi‖p
2 ≤ (kS)p/2−1‖hT0‖p

p. (14)

Noting that‖hT0‖p ≤ S1/p−1/2‖hT0‖2, so‖hT0‖p
p ≤ S1−p/2‖hT01‖p

2



we can now substitute in (12) to get

(2ǫ)p ≥
`

1−δ(k+1)S

´p/2‖hT01‖p
2 −

`

1+δkS

´p/2 ‖hT01‖p
2

k1−p/2
. (15)

Using (13),

‖h‖2
2 = ‖hT01‖2

2 + ‖hTc
01
‖2
2 ≤ ‖hT01‖2

2(1 +
1

k2/p−1(2/p − 1)
),

which when substituted in (15) yields the desired result.
Proof outline for Theorem 5. This proof is similar to the analogous
proof in [1] and differs from the previous one by definingT0 as the
support set of theS largest coefficients ofx , which is now no longer
assumed sparse. This leads to‖hTc

0
‖p

p ≤ ‖hT0‖p
p+2‖xTc

0
‖p

p. Using
this inequality instead of the analogous one from the previous proof,
the rest proceeds similarly with minor modifications to leadto the
desired result.

4. NUMERICAL EXPERIMENTS

In this section we present numerical experiments, to illustrate the
behavior of the constants in Theorems 4 and 5 and to empirically
investigate the solution of (9) in the presence of noise, andhow it
depends onp.

To that end, a256×1024 matrixA is randomly generated from a
mean-zero Gaussian and held fixed. We estimate the restricted isom-
etry constants ofA (see Figure 1(a)) by computing singular values
of 1000 randomly selectedM×S submatrices (thus providing lower
bounds on the true values). We then estimate the values ofCS,k,p

from Theorem 4 and sincek is a free parameter, we compute the
minimum value of the constant over all admissiblek > 1, inde-
pendently for eachp. As shown in Figure 1(b) (with the optimalk
values in Figure 1(c)), the resulting bound is much tighter than that
obtained by fixingk, e.g.,k = 3 as in Candès and Tao [3]. Note that
the constantsCS,k,p provide upper bounds which are possibly rather
pessimistic: numerical experiments where we solve (9) yield lower
errors, particularly whenp is close to 0, see Figures 2 and 3. Never-
theless, there is a wide range ofp values for which the constants are
well behaved, and they guarantee a stable recovery.

We now describe the experiments where we generateb = Ax+
e for sparse and compressiblex with various noise levels and solve
(9). Note that the nonconvexity ofP ǫ

p whenp < 1 means that our
solutions may only be local minima. However, in the noise-free set-
ting, the observation that localℓp minimization can recover signals
exactly [8], together with theoretical results providing circumstances
under which the globalℓp minimizer is exact [10], suggest that local
minimization algorithms may give global solutions in this context.

Our approach to solving (9) is to first solve the simpler, uncon-
strained formulation:

Pµ,p : min
x

‖x‖p
p + µ‖b − Ax‖2. (16)

The parameterµ is adjusted manually and the minimization repeated,
until the constraint in (9) is active. For eachµ, the problem (16) is
solved using an iteratively-reweighted least squares approach [11].
Code for this was contributed by Wotao Yin, for which we are grate-
ful. The previous iteratexn−1 is substituted into the Euler-Lagrange
equation, leading to a linear equation to solve for the next iteratexn:

ˆ

x
2
n−1 + ǫ

˜
p−2
2 xn + µAT (Axn − b) = 0, (17)

where the operations in the first term are to be understood compo-
nentwise, and theǫ is added to avoid division by zero (asp − 2 is
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Fig. 1. (a) Estimates ofδS for a specific Gaussian matrixA of
size256 × 1024. (b) The resulting constantsCS,k,p at S = 8 and
32 computed both fork = 3 and fork∗(S, p) which minimizes the
constant for a givenp andS. Choosing the bestk reduces the upper
bound on the reconstruction error.(c) The values ofk∗(S, p). The
dip atp = 1

2
for S = 8 is likely due to small numerical differences

arising from1/p being an integer. For bothS = 8 andS = 32, once
p is large enough, there is nok > 1 for which (10) is satisfied.

negative). We begin the iteration with the minimum-norm solution
toAx = b, and use the strategy found effective in [8] (see also [12])
of using a moderately largeǫ = 1, then iteratively decrementingǫ
by a factor of 10 after convergence and then repeating. Convergence
was deemed complete when‖xn − xn−1‖2 < 10−8.

Sample results are shown in Figures 2 and 3 . The signalsx

were randomly generated from a mean-zero Gaussian distribution
(σ = 1) on the support ofx. Solutions were computed forp =
0.01, 0.1, 0.2, . . . , 1, for a very sparse signal (S = 8), a not so
sparse signal (S = 90), and a compressible but not sparse signal
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Fig. 2. Plots of reconstruction error versusp for solutions of (9).
Top: for a very sparse signal, the reconstruction error rises with p.
Middle: for a less sparse signal, when the noise level is not too large,
the error changes little, except for largep where the reconstruction
is poor. For stronger noise, the reconstruction is uniformly poor.
Bottom: for a signal that is compressible but not sparse, theerror
rises for small or largep, being least forp about1/2.

obtained by adding small Gaussian noise (σ = 0.01) to a randomly
generated (σ = 2) sparse signal (S = 32). Gaussian noise of differ-
ent levels was added toAx to obtain the noisy measurementsb.
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